

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPD-DIS/13/7730 Dated 12 Mar 2013

ASD Triacs and Thyristors in TO-220AB package - New ECOPACK2 molding compound & electroplating generalization

Table 1. Change Implementation Schedule

Forecasted implementation date for change	05-Apr-2013
Forecasted availability date of samples for customer	05-Mar-2013
Forecasted date for STMicroelectronics change Qualification Plan results availability	05-Mar-2013
Estimated date of changed product first shipment	11-Jun-2013

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	ASD Triacs and Thyristors in TO-220AB package
Type of change	Package assembly material change
Reason for change	To meet the so called "Halogen-Free" requirements of the market
Description of the change	ST is converting its ASD Triacs and Thyristors housed in TO-220AB package from the standard moulding compound to the ECOPACK2 grade compound
Change Product Identification	date code, QA number and marking
Manufacturing Location(s)	

47/.

Table 3. List of Attachments	Tal	ble	3. L	ist	of	Attac	chm	ents
------------------------------	-----	-----	------	-----	----	-------	-----	------

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN IPD-DIS/13/7730
Please sign and return to STMicroelectronics Sales Office	Dated 12 Mar 2013
□ Qualification Plan Denied	Name:
□ Qualification Plan Approved	Title:
	Company:
☐ Change Denied	Date:
□ Change Approved	Signature:
Remark	

47/.

DOCUMENT APPROVAL

Name	Function
Paris, Eric	Marketing Manager
Duclos, Franck	Product Manager
Cazaubon, Guy	Q.A. Manager

A7/.

(1) IPD: Industrial & Power Discretes - ASD: Application Specific Device - IPAD: Integrated Passive and Active Devices

PCN Product/Process Change Notification

ASD Triacs and Thyristors in TO-220AB package:

New ECOPACK®2 molding compound & electroplating generalization

Notification number:	IPD-DIS/13/7730	Issue Date	12/03/2013
Issued by	Aline AUGIS		
Product series affected	by the change	ACS120-7ST ACST10xx-7T ACST12xx-7T ACST610-8T ACST830-8T BTB04-600SL TS1220-600T TS420-600T TS820-600T TYN612MRG TN22-1500T	
Type of change		Package assembly	material change

Description of the change

ST is converting its **ASD Triacs and Thyristors** housed in **TO-220AB package** from the standard moulding compound to the ECOPACK[®]2 grade compound.

Reason for change

To meet the so called "Halogen-Free" requirements of the market.

Former versus changed product:	The changed products do not present modified electrical, dimensional or thermal parameters, leaving unchanged the current information published in the product datasheet The Moisture Sensitivity Level of the part (according to the IPC/JEDEC JSTD-020D standard) remains unchanged. The footprint recommended by ST remain the same. There is no change in the packing modes and the standard delivery quantities either. The products remain in full compliance with the ST ECOPACK®2 grade ("halogen-free").
--------------------------------	--

Disposition of former products

Deliveries of current product versions will continue while the conversion is brought to completion and as long as former product stocks last.

Issue date 12-03-2013 1/2

STMicroelectronics IPD - ASD & IPAD Division1 **BU Thyristors/Triacs and Rectifiers**

(1) IPD: Industrial & Power Discretes - ASD: Application Specific Device - IPAD: Integrated Passive and Active Devices

Marking and traceability

Date code, QA number and a letter "G" printed to the right of the "e3" symbol on the marking.

Qualification complete date

February 2013

Forecasted sample availability

Product family	Sub-family	Commercial part Number	Availability date
Triac	TO-220AB	ACST1235-7T	Now

All other devices will be available 4 weeks after the request.

Change implementation schedule

Sales types	Estimated production start	Estimated first shipments
All	Week 14-2013	Week 23-2013

Comments:

Customer's feedback

Please contact your local ST sales representative or quality contact for requests concerning this change

Absence of acknowledgement of this PCN within 30 days of receipt will constitute acceptance of the change Absence of additional response within 90 days of receipt of this PCN will constitute acceptance of the change

Qualification program and results	13046QRP	attached
-----------------------------------	----------	----------

Issue date 12-03-2013 2/2

External Reliability Report

Green Molding Compound qualification for AC Switch products assembled in a TO-220 AB package at Longgang (China)

AC Switches	14/-C C-1	
	Wafer fab	ST Tours (France)
SCR & TRIACS	Assembly plant	ST Longgang (China)
IPD	Reliability Lab	ST Tours (France)
ASD & IPAD		
TO-220 AB		
	IPD ASD & IPAD	IPD Reliability Lab ASD & IPAD

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
Rev. 1	February 14, 2013	11	Gilles Dutrannoy	Jean-Paul Rebrasse	First issue

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

	APPLICABLE AND REFERENCE DOCUMENTS	
2	GLOSSARY	3
	RELIABILITY EVALUATION OVERVIEW	
	3.1 OBJECTIVES	
	3.2 CONCLUSION	
4	DEVICES CHARACTERISTICS	5
	4.1 DEVICES DESCRIPTION	5
	4.2 CONSTRUCTION NOTES	
5	TESTS RESULTS SUMMARY	
	5.1 Test vehicles	
	5.2 TEST PLAN AND RESULTS SUMMARY	
6	ANNEXES	10
	6.1 DEVICE DETAILS	10
	6.2 Tests Description	11

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
ADCS 8273280	Product D-FMEA: FMEA Scr's/triacs & ACS assembled in DPAK transfer from
ADC3 027 3200	Shenzhen to Longgang
ADCS 8294111	Product D-FMEA: Product:Transfer from Shenzhen to Longgang of TO-220FP
ADC3 0294111	AB & AC Power Schottky, Bipolar & Turboswitch rectifiers
	Product D-FMEA: Qualification of TO-220FPAB & TO220AB at LGG for PNL
ADCS 8326536 A	58 products:
ADCS 6326536_A	- Transfer from Shenzhen to Longgang of TO220FP GMC
	- Qualif of TO220AB in <i>Longgang</i> resin STD & GMC
AEC-Q101	Stress test qualification for automotive grade discrete semiconductors
JESD 22	Reliability test methods for packaged devices
JESD 47	Stress-Test-Driven Qualification of Integrated Circuits
JESD 94	Application specific qualification using knowledge based test methodology
MIL-STD-750C	Test method for semiconductor devices
SOP 2614	Reliability requirements for product qualification
SOP 267	Product maturity levels
0061692	Reliability tests and criteria for qualifications

2 GLOSSARY

BOM	Bill Of Materials
DUT	Device Under Test
F/G	Finished Good
HTRB	High Temperature Reverse Bias
PCT	Pressure Cooker Test
P/N	Part Number
RH	Relative Humidity
SS	Sample Size
TCT	Temperature Cycling Test
ТНВ	Temperature Humidity Bias

February 14th, 2013 Report ID: 13046QRP

3 RELIABILITY EVALUATION OVERVIEW

3.1 **Objectives**

This project consists in the qualification of a Green Molding Compound dedicated to AC Switch products (ASDs and SCRs) assembled in a TO-220 AB package at ST Longgang (China).

The reliability test plan is defined following the "stress test driven" method.

Three test vehicles were chosen:

TYN612MRG: SCR

ACST1235-7T: ASD-TRIAC TN22-1500T: ASD-SCR

The reliability test results are detailed in the "Test results summary" (see § 5).

Conclusion 3.2

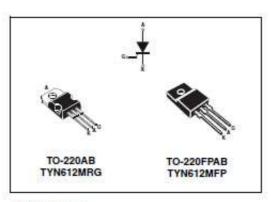
Qualification Plan requirements have been fulfilled without exception. Reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the robustness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICES CHARACTERISTICS

4.1 **Devices description**

TYN612M

12 A SCR


Main features

Symbol	Value	Unit
I _{T(RMS)}	12	A
V _{DRM} /V _{RRM}	600	V
I _{GT} (min / max)	1.5 / 5	mA

Description

The TYN612M SCR is suitable to fit modes of control found in applications such as voltage regulation circuits for motorbikes, overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition.

The insulated fullpack package allows a back to back configuration.

Order codes

Part Numbers	Marking	
TYN612MRG	TYN612M	
TYN612MFP	TYN612MFP	

Table 1. Absolute ratings (limiting values)

Symbol	Parameter			Value	Unit
IT(RMS)	RMS on-state current (180" conduction angle)	TO-220AB	T _c = 105° C	12	- 2
		TO-220FPAB	T _C = 70° C	12	Α
(0000000	Average on-state current (180° conduction angle)	TO-220AB	T _c = 105° C	8	А
T(AV)		TO-220FPAB	T _c = 70° C	8	
I _{TSM}	Non repetitive surge peak on-state current	$t_p = 8.3 \text{ ms}$	T _J = 25° C	125	Α
		t _p = 10 ms		120	
ň	I ² t Value for fusing	t _p = 10 ms	T _j = 25° C	72	A ² s
al/at	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $I_T \le 100 \text{ ns}$ $I_T = 100 \text{ ns}$		T _j = 125" C	50	A/μs
I _{GM}	Peak gate current t _p = 20 µs T _j = 125" C		4	Α	
P _{G(AV)}	Average gate power dissipation T ₁ = 125° C			1	w
T _{stg}	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	" C
V _{RGM}	Maximum peak reverse gate voltage			5	٧

April 2007 Rev 4 1/8

www.st.com

ACST12

Overvoltage protected AC switch

Features

- Triac with overvoltage crowbar technology
- Low I_{GT} (<10 mA) or high immunity (I_{GT}<35 mA) version
- High noise immunity: static dV/dt > 2000 V/µs

Benefits

- Enables equipment to meet IEC 61000-4-5
- High off-state reliability with planar technology
- Need no external over voltage protection
- Reduces the power passive component count
- High immunity against fast transients described in IEC 61000-4-4 standards

Applications

- AC mains static switching in appliance and industrial control systems
- Drive of medium power AC loads such as:
 - Universal motor of washing machine drum
 - Compressor for fridge or air conditioner

Description

The ACST12 series belongs to the ACS™/ACST power switch family built with A.S.D.® (application specific discrete) technology. This high performance device is suited to home appliances or industrial systems and drives loads up to 12 A.

This ACST12 switch embeds a Triac structure and a high voltage clamping device able to absorb the inductive turn-off energy and withstand line transients such as those described in the IEC 61000-4-5 standard. The ACST1210-7 needs a low gate current to be activated ($I_{\rm GT}$ < 10 mA) and still provides a high electrical noise immunity complying with the IEC 61000-4-4 standard. The ACST1235-7 offers an extremely high static dV/dt immunity of 2 kV/µs minimum.

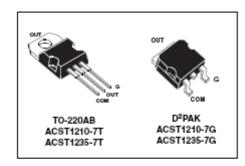


Figure 1. Functional diagram

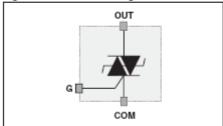


Table 1. Device summary

Symbol	Value	Unit
I _{T(RMS)}	12	A
V _{DRM} /V _{RRM}	700	v
I _{GT}	10 or 35	mA

TM: ACS is a trademark of STMicroelectronics

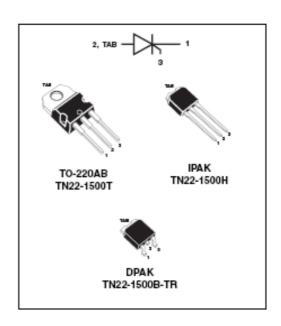
6: A.S.D. is a registered trademark of STMicroelectronics

December 2010 Doc ID 15238 Rev 4 1/13

TN22

Fluorescent tube lamp starter SCR

Features


- High clamping voltage structure (1200 to 1500 V)
- Low gate triggering current for direct drive from line (< 1.5 mA)
- High holding current (> 175 mA), ensuring high striking energy

Description

The TN22 has been specifically developed for use in tube lamp electronic starter circuits.

Used in conjunction with a sensitive SCR, it provides high energy striking characteristics with low triggering power.

Thanks to the optimized characteristics of the TN22, starters based on this device can offer high reliability levels and extended life time of the fluorescent tube lamps.

August 2009 Doc ID 3768 Rev 3 1/13

www.st.com

4.2 Construction notes

See referenced Product Baseline for detailed information.

	TYN612MRG
Wafer/Die fab. Information	
Wafer fab manufacturing location	Tours
Wafer Testing (EWS) information	
Electrical testing manufacturing location	Tours
Assembly information	
Assembly site	Longgang (China)
Final testing information	
Testing location	Longgang (China)

	ACST1235-7T
Wafer/Die fab. Information	
Wafer fab manufacturing location	Tours
Wafer Testing (EWS) information	
Electrical testing manufacturing location	Tours
Assembly information	
Assembly site	Longgang (China)
Final testing information	
Testing location	Longgang (China)

_	TN22-1500T
Wafer/Die fab. Information	
Wafer fab manufacturing location	Tours
Wafer Testing (EWS) information	
Electrical testing manufacturing location	Tours
Assembly information	
Assembly site	Longgang (China)
Final testing information	
Testing location	Longgang (China)

5 TESTS RESULTS SUMMARY

5.1 Test vehicles

Three test vehicles were chosen:

TYN612MRG: SCRACST1235-7T: ASD-TRIAC

ACS11235-71: ASD-1RI
 TN22-1500T: ASD-SCR

5.2 Test plan and results summary

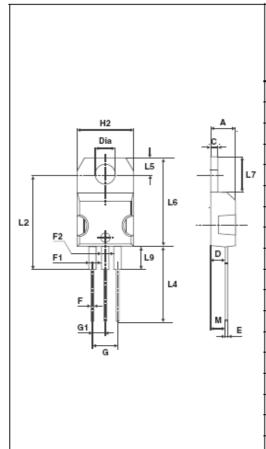
HTRB / JESD22 A-108 / MIL-STD-750C method 1040					
		TYN612MRG	ACST1235-7T/8	TN22-1500T/8	
		L1121005L2	L1121005L1	L1121005L3	
	Conditions	Tj = 125 °C	Tj = 125 °C	Tj = 125 °C	
		600V AC Peak	700V AC Peak	800V AC Peak	
S	168 h	0/77	0/77	0/77	
STEPS	500 h	0/77	0/77	0/77	
က	1000 h	0/77	0/77	0/77	

THB / JESD22 A-101						
		TYN612MRG		ACST1235-7T/8	TN22-1500T/8	
		L1121005L2	L1121005L8	L1121005L1	L1121005L3	
Conditions		85 °C 85%HR VR = 100V		85 °C 85%HR V = 100VAC	85 °C 85%HR VR = 100V	
S	168 h	0/77	0/77	0/76	0/77	
reps	500 h	0/77	0/77	0/76	0/77	
ST	1000 h	0/77	0/77	0/76	0/77	

TCT / JESD22 A-104				
	TYN612MRG	ACST1235-7T/8	TN22-1500T/8	
	L1121005L2	L1121005L1	L1121005L3	
Conditions	-65°C / +150°C2 cycles/h			
500C	0/25	0/25	0/25	

AUTOCLAVE / JESD22A-101						
	TYN612MRG		ACST1235-7T/8		TN22-1500T/8	
_	L1121005L2	L1121005L8	L1121005L1	L1121005L7	L1121005L3	L1121005L9
Conditions 121°C						
	2 Bars					
196 h	0/25	0/25	0/25	0/25	0/25	0/25

6 ANNEXES


6.1 <u>Device details</u>

TO-220AB

6.1.1 Package outline/Mechanical data

Table 6. TO-220AB dimensions

	Difficusions					
Ref.	Millin	neters	Inches			
	Min.	Max.	Min.	Max.		
Α	4.40	4.60	0.173	0.181		
С	1.23	1.32	0.048	0.051		
D	2.40	2.72	0.094	0.107		
Е	0.49	0.70	0.019	0.027		
F	0.61	0.88	0.024	0.034		
F1	1.14	1.70	0.044	0.066		
F2	1.14	1.70	0.044	0.066		
G	4.95	5.15	0.194	0.202		
G1	2.40	2.70	0.094	0.106		
H2	10	10.40	0.393	0.409		
L2	16.4 typ.		0.645 typ.			
L4	13	14	0.511	0.551		
L5	2.65	2.95	0.104	0.116		
L6	15.25	15.75	0.600	0.620		
L7	6.20	6.60	0.244	0.259		
L9	3.50	3.93	0.137	0.154		
М	2.6 typ.		0.102	2 typ.		
Diam.	3.75	3.85	0.147	0.151		

Dimensions

6.2 Tests Description

Test name	Description	Purpose			
Die-oriented test					
HTRB (AC mode) High Temperature Reverse Bias	The device is stressed here in AC mode, trying to satisfy as much as possible the following conditions: - Low power dissipation Peak supply voltage compatible with diffusion process and internal circuitry limitations.				
	Package-oriented to	est			
AUTOCLAVE Pressure Cooker Test	The device is unbiased under 121 ℃, and a 2 bars air atmosphere during 96 hours.	The Autoclave is performed to evaluate the reliability of non-hermetic packaged solid-state devices in humid environments. It employs severe conditions of temperature, humidity, and pressure which accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it. The stress usually activates the same failure mechanisms as the "85/85" Steady-State Humidity Life Test (THB).			
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature, and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.			
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time. without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2013 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

